
TCORS

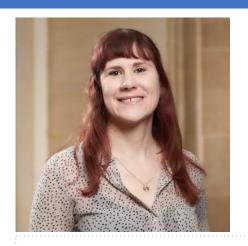
Center for the Assessment of Tobacco Regulations [CAsToR]

University of Massachusetts Amherst

Acknowledgements and declarations of interest

The oral nicotine pouch review was supported by the National Cancer Institute of the National Institutes of Health (NIH) and FDA Center for Tobacco Products (CTP) under Award Number 2U54CA229974. The e-cigarette systematic review is funded primarily by Cancer Research UK, as well as through the above funding mechanism. The content is solely the responsibility of the authors and does not necessarily represent the official views of Cancer Research UK, the NIH or the Food and Drug Administration. The funders were not involved in the decision to submit for publication.

Outside of the current work, I have received research funding from the NIH-FDA, Cancer Research UK, the British Heart Foundation, the World Health Organization, the University of Oxford, and the National Institute for Health Research (UK). The views expressed here are my own and not those of my funders.


I have never received funding from tobacco, vaping, or pharmaceutical industries.

I have no conflicts of interest to declare.

Additional – critical – acknowledgement: It takes a village to write a Cochrane review!

Other members of oral nicotine pouch author team

NICOLA *LINDSON*University of Oxford

HOLLY *JARMAN*University of Michigan

CLAIRE *MA*University of Michigan

JONATHAN *LIVINGSTONE-BANKS* University of Oxford

NARGIZ *TRAVIS*Georgetown University

HARRY TATTAN-BIRCH UCL

JAMIE *BROWN* UCL

LION SHAHAB UCL

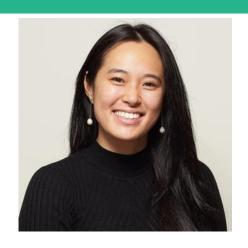
MACIEJ *GONIEWICZ*ROSWELL PARK COMPREHENSIVE
CANCER CENTER

ANGELA *DIFENG WU*University of Oxford

Other members of electronic cigarette author team

NICOLA *LINDSON*University of Oxford

JONATHAN *LIVINGSTONE-BANKS*University of Oxford


AILSA *BUTLER*University of Oxford

HAYDEN *MCROBBIE* Queen Mary University London

PETER *HAJEK*Queen Mary University London

ANGELA DIFENG WU
University of Oxford

RACHNA *BEGH*University of Oxford

ANNIKA *THEODOULOU*University of Oxford

CAITLIN *NOTLEY*University of East Anglia

NANCY *RIGOTTI*Harvard University

TARI *TURNER* MONASH UNIVERSITY

THOMAS FANSHAWE UNIVERSITY OF OXFORD

What I'll cover

Cochrane, and key Cochrane Tobacco Addiction Group methods

Oral nicotine pouches review

Latest update to our e-cigarettes for smoking cessation review

Pause for questions

Next steps

Time for more questions

- Global non-profit organisation
- Produces systematic reviews to inform health decision making
- The Cochrane Library

Searches, screening and data extraction

Protocols published in advance

Studies identified through: study registers, databases, screening of SRNT abstracts, and researcher contacts

Screening and data extraction conducted in duplicate

Risk of bias assessment

- Conducted using standard Cochrane Tobacco Addiction Group methods (ROB **v1**)
- Assessed the following domains as at high, low, or unclear risk of bias: random sequence generation, allocation concealment, performance bias, detection bias, attrition bias, other risk of bias
- Studies were judged to be at high risk of bias overall if high in one or more domains, low if low across all domains, and the remainder unclear

Addiction / Volume 118, Issue 9 / pp. 1811-1816

METHODS AND **TECHNIQUES**

⊙ Open Access

Assessing and minimizing risk of bias in randomized controlled trials of tobacco cessation interventions: Guidance from the Cochrane Tobacco Addiction Group


Jamie Hartmann-Boyce X, Nicola Lindson

First published: 02 May 2023

https://doi.org/10.1111/add.16220

Statistical synthesis

- We pool dichotomous outcome data using a Mantel-Haenszel random effects model, with results reported as risk ratios (RRs) and 95% confidence intervals (CIs)
- Continuous data are pooled using generic inverse variance models, with results reported as mean differences (MDs) with 95% Cls
- For abstinence, we use the strictest definition at longest follow-up, counting those lost to follow-up as non-abstinent (intention to treat)
- For all other outcomes, we use complete case data
- Sensitivity analyses test sensitivity of findings to removal of studies with industry funding and/or at high risk of bias

GRADE Working Group grades of evidence

- High certainty: we are very confident that the true effect lies close to that of the estimate of effect.
- Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
- Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
- Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of the effect.

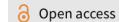
For randomized controlled trials, GRADE is based on five domains: risk of bias; imprecision; indirectness; inconsistency; and publication bias.

Trusted evidence.
Informed decisions.
Better health.

Review language : English

Title Abstract K

Cochrane reviews ▼

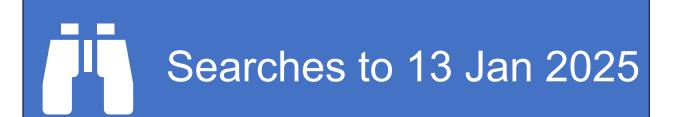

Searching for trials ▼

Clinical Answers ▼

About ▼

Help ▼

Cochrane Database of Systematic reviews | Review - Intervention



Oral nicotine pouches for cessation or reduction of use of other tobacco or nicotine products

☑ Jamie Hartmann-Boyce (D), Harry Tattan-Birch, Jamie Brown, Lion Shahab, Maciej L Goniewicz, Claire L Ma, Angela Difeng Wu, Nargiz Travis, Holly Jarman, Jonathan Livingstone-Banks^a, Nicola Lindson^a

Version published: 24 October 2025 Version history

https://doi.org/10.1002/14651858.CD016220.pub2 ☐

Full review published today!

Objectives

Primary

To evaluate:

- benefits and harms of oral nicotine pouches (ONPs) when used to help people stop tobacco smoking
- the impact of ONPs on prevalence of tobacco smoking

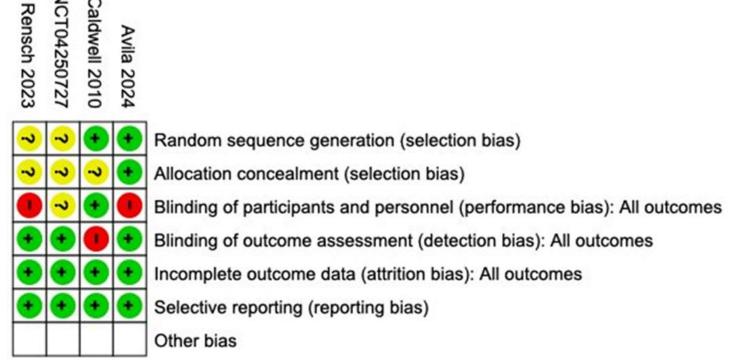
Secondary

To evaluate:

- benefits and harms of ONPs when used to stop using other non-combustible tobacco/commercial nicotine product use (e.g., heat not burn; e cigarettes)
- the impact of ONPs on prevalence of other non-combustible tobacco/commercial nicotine products use

Eligibility criteria

For objectives related to benefits & harms of ONPs only*


Study design	Randomized controlled trials						
Participants	People using tobacco or other (non-pharma) nicotine products						
Intervention	Provision of ONPs to reduce or quit tobacco/other (non-pharma) nicotine product use						
Comparators	 Another commercial tobacco/nicotine product Another ONP intervention Smoking cessation pharmacotherapy Non-nicotine pouches (placebo) No or minimal intervention 						
Outcomes	 Tobacco/nicotine abstinence at 4+ weeks Biomarkers/adverse events at 1+ weeks 						

^{*} Eligibility criteria for studies related to prevalence objectives can be found in the published protocol/review

Included studies

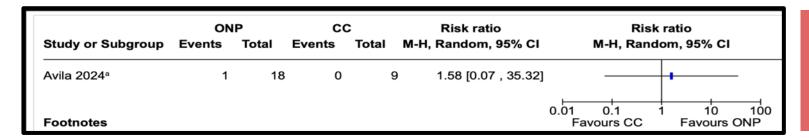
Four (small) RCTs (total n=282)

- All participants smoked cigarettes at baseline
- Size ranged from 30 146 participants
- One study (Rensch 2023) was tobacco industry funded
- 3 studies specifically included people not motivated to quit smoking
- Compared ONP to e-cigs (1 study), snus (1 study), NRT (1 study), minimal control (2 studies), tobacco abstinence (1 study), other ONP (varying dose; 2 studies)
- 3 studies high risk of bias; one unclear risk of bias

Results (from pre-specified comparisons/outcomes)

Comparisons

- ONP vs minimal control
- ONP vs NRT
- ONP vs EC


Outcomes

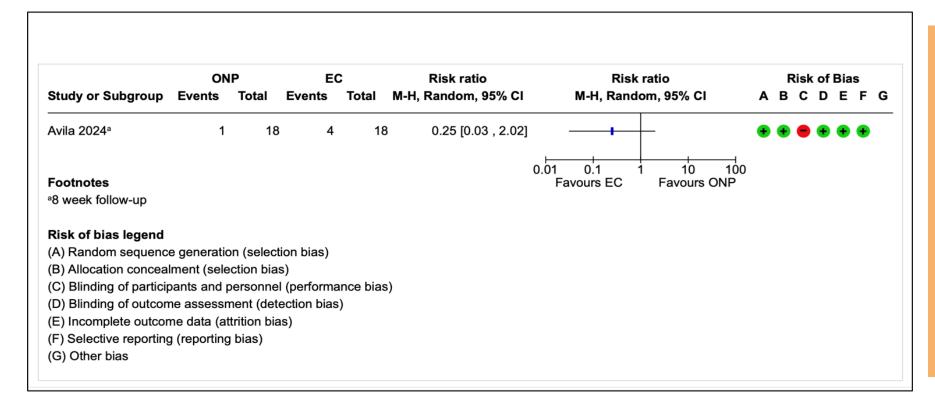
- Smoking abstinence
- AEs
- SAEs
- NNAL
- Carboxyhemoglobin

ONP versus minimal control (2 studies)

Smoking Cessation: Very low certainty evidence. No conclusions can be drawn

	ONP			Combustible cigarettes			Mean difference	Mean difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	IV, Random, 95% CI	IV, Randor	n, 95% CI
Rensch 2023 ^a	64.7	51	25	330	224	28	-265.30 [-350.64 , -179.96]	-	
								-200-100 0	
Footnotes								Favours ONP	Favours comb

NNAL: Very low certainty evidence of lower NNAL in those randomized to ONP


		ONP		Combus	tible ciga	rettes	Mean difference	Mean di	fference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	IV, Random, 95% CI	IV, Rando	m, 95% CI
Rensch 2023 ^a	4.6	0.9	25	11.3	4.3	28	-6.70 [-8.33 , -5.07] —	
								-10 -5	5 10
Footnotes								Favours ONP	Favours combus

Carboxyhemoglobin: Very low certainty evidence of lower levels in those randomized to ONP

ONP versus NRT (1 study)

- Of our key outcomes this study (Caldwell 2020) only reported nonserious adverse events
- ONP use was associated with fewer reports of 'bad taste' or 'gastrointestinal side effects' than NRT. One participant reported discontinuing ONP use due to gastrointestinal symptoms, compared to two participants who discontinued gum use for the same reason.

ONP versus nicotine e-cigarettes (1 study)

Smoking cessation:

Low certainty evidence of higher quit rates in those randomized to nicotine ecigarettes

No other key outcomes reported

Serious adverse events (SAEs)

- 3 of the 4 included studies measured SAEs
- All three studies reported that none occurred
- This equates to very low certainty evidence

Ongoing studies

Study ID (funder/sponsor)	Sample size	Expected comparator(s)	Expected (relevant) outcome(s)	Anticipated completion
Cheng 2024 (Altria)	400	ONPs varying on flavour	3 and 6 weeks: <u>smoking abstinence/reduction</u> , CO,	June 2025
Hammeed 2024 (NS)	600	E-cigarettes; minimal control	1 year: smoking abstinence/reduction, adverse events,	April 2025
ISRCTN13243849 (Swedish Match)	46	ONPs varying on texture (moist vs dry) and strength	Timeline unclear: biomarkers of exposure, "safety"	Dec 2025
NCT06043362 (Penn State)	375	ONPs varying on strength and flavour	16 weeks: smoking abstinence/reduction, NNAL, CO	August 2028
NCT06088862 (Global Action to End Smoking)	325	E-cigarettes; NRT	10 weeks: <u>smoking abstinence</u> , CO	Dec 2024
NCT06315881 (Ohio State)	160	ONPs varying on strength ; minimal control	12 weeks: smokeless tobacco or <u>smoking</u> <u>abstinence</u>	August 2028
NCT06372899 (NCI)	200	E-cigarettes	6 months : <u>smoking abstinence,</u> NNAL, CO, biomarkers of exposure	March 2028
NCT06506162 (NCI)	320 (EC)	ONPs varying on flavour and strength ; NRT	1 week: product use	Feb 2028
NCT06568900 (Swedish Match)	450	ONPs varying on flavour ; minimal control	12 weeks: NNAL	Aug 2024
NCT06678789 (NIDA)	50	ONPs varying on strength	8 weeks: <u>smoking abstinence/reduction</u> , product use	July 2026

We estimate we are aware of 50-70% of ongoing studies prior to publication, so this is not an exhaustive list!

Conclusions

- There is limited evidence on using ONPs for smoking cessation or reduction
- There is no evidence on using ONPs for cessation/reduction of other tobacco/nicotine products
- There is no data on whether ONP use affects prevalence of use of tobacco/other nicotine products
- Low certainty evidence suggests that people randomized to ONPs may be slightly less
 likely to quit smoking than those randomised to nicotine e-cigarettes, but data is from one
 small study & very imprecise
- Evidence from all other comparisons & outcomes was either entirely absent, or very low certainty, meaning we are not able to draw conclusions
- The 3 studies that reported SAEs found that none occurred
- Future trials should prioritise comparing ONP to other active interventions, e.g., NRT; ecigarettes
- They should aim to measure abstinence and SAEs for as long as possible (i.e., 6 months +)

PLEASE NOTE:

This update is still going through editorial processes.

Please do not share the contents of the second half of this presentation more widely!

Trusted evidence.
Informed decisions.
Better health.

Cochrane reviews ▼

Searching for trials 🔻

Clinical Answers ▼

Update should be out soon!

🖹 Review

Cochrane Database of Systematic reviews | Review - Intervention

Electronic cigarettes for smoking cessation

Nicola Lindson, Ailsa R Butler, Hayden McRobbie, Chris Bullen, Peter Hajek, Angela Difeng Wu, Rachna Begh, Annika Theodoulou, Caitlin Notley, Nancy A Rigotti, Tari Turner, Jonathan Livingstone-Banks, Tom Morris,

■ Jamie Hartmann-Boyce Authors' declarations of interest

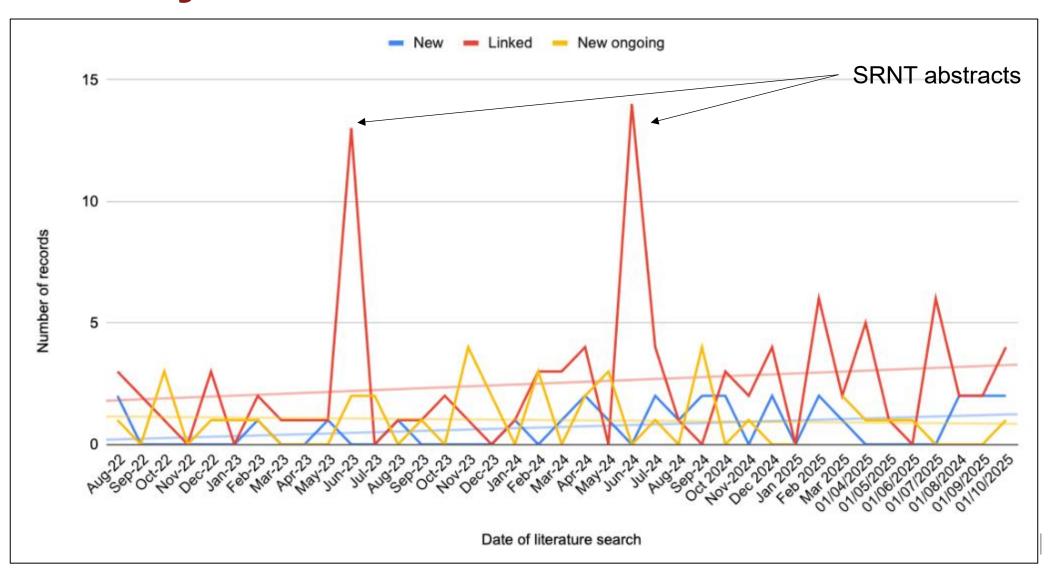
Version published: 29 January 2025 Version history

https://doi.org/10.1002/14651858.CD010216.pub9 🗗

Objective:

To examine the safety, tolerability, and effectiveness of EC for helping people who smoke tobacco achieve long-term smoking abstinence, in comparison to non-nicotine EC, other smoking cessation treatments, and no treatment.

Searches to 1 March 2025


Living systematic review (LSR)

- Search for new evidence monthly
- Publish links to new evidence monthly
- Update full review when new data emerges that changes, strengthens, or weakens existing conclusions, or relates to new comparisons or outcomes

Are all other reviews 'dead'?

Number of new records picked up in monthly searches

Eligibility criteria

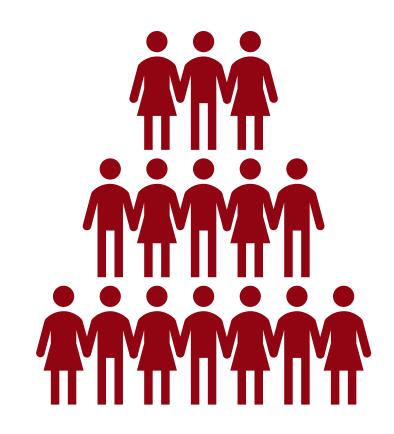
	Comparison between EC and ONP reviews
Study design	Randomized controlled trials and uncontrolled intervention studies
Participants	People who smoke using tobacco or other (non-pharma) nicotine products
Intervention	Provision of electronic cigarettes or information about electronic cigarettes ONPs to reduce or quit smoking tobacco/other (non-pharma) nicotine product use
Comparators	 Another commercial tobacco/nicotine product Another nicotine e-cigarette ONP intervention Smoking cessation pharmacotherapy Non-nicotine e-cigarettes pouches (placebo) No or minimal intervention
Outcomes	 Tobacco/nicotine abstinence at 6+ months 4+ weeks (key outcome) Biomarkers/adverse events at 1+ weeks (key: SAEs, AEs)

Results (from pre-specified comparisons/outcomes)

Comparators

- Nicotine EC vs NRT
- Nicotine EC vs non-nicotine EC (placebo EC)
- Nicotine EC vs behavioral support only/no support

Outcomes


- Smoking abstinence
- SAEs

Included studies

104 trials (total n=30,366); 61 RCTs (14 new to this update)

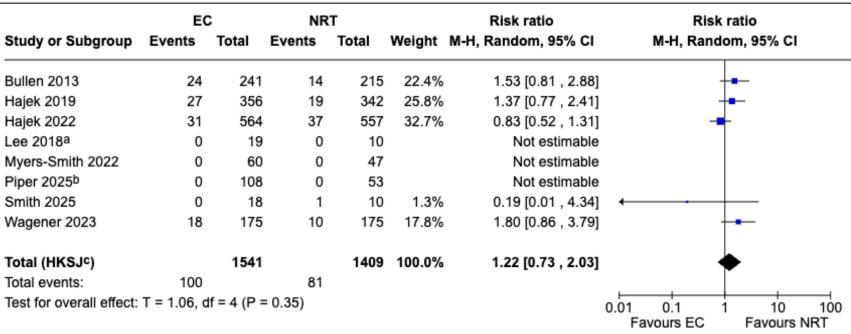
- All participants smoked cigarettes at baseline
- 48 studies conducted in USA, 21 in UK, 9 in Italy, 6 in Greece, 5 in Australia (all other countries 2 or fewer studies)
- 30 studies exclusively recruited people not motivated to quit smoking
- 16 reported funding from tobacco/vaping industries (no analyses were sensitive to their exclusion)
- 11 at low risk of bias, 70 at high risk (including all non-randomized studies), remainder at unclear risk

Nicotine EC versus NRT, Smoking cessation at 6+ months

GRADE certainty of evidence: HIGH

	EC	;	NR	Т		Risk ratio	Risk ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI		
1.1.1 Not selected on pregnancy									
Bullen 2013	21	. y 289	17	295	11.6%	1.26 [0.68 , 2.34]	_		
Hajek 2019	79	438		446	30.1%		l		
Klonizakis 2022	36	84	25	82			l		
Kouroutzoglou 2024	8	19		19					
Lee 2018	5	20		10					
Myers-Smith 2022	13	68	2	67					
Russell 2021*a	34	140		70	13.8%				
Russell 2021*b	44	145	15	71	13.9%				
Vojjala 2025	7	63	7	58	5.0%				
Subtotal		1266		1118	97.8%	1.55 [1.28 , 1.87]	♦		
Total events:	247		131				'		
Test for overall effect:	Z = 4.47 (F	< 0.0000	01)						
Heterogeneity: Chi ² =	7.89, df = 8	3 (P = 0.4	4); I ² = 0%	b					
1.1.2 Pregnant popul	lation								
Hajek 2022 ^c	6	169	3	150	2.2%	1.78 [0.45 , 6.97]			
Subtotal	·	169		150					
Total events:	6		3		2.270	1.70 [0.40 , 0.07]			
Test for overall effect:		P = 0.41)	·						
Heterogeneity: Not ap	•	,							
	F								
Total		1435		1268	100.0%	1.55 [1.28 , 1.88]	♦		
Total events:	253		134						
Test for overall effect:	Z = 4.55 (F	o.0000	01)				0.01 0.1 1 10 100		
Test for subgroup diffe	rences: Ch	ni² = 0.04,	df = 1 (P	= 0.85), l ^a	² = 0%		Favours NRT Favours EC		
Heterogeneity: Chi ² =	7.95, df = 9	9 (P = 0.5	4); I ² = 0%	•					

Footnotes


aFBNPs EC arm; control group split to avoid double-counting

bNSP EC arm; control group split to avoid double-counting

^cThis is a subset of data from participants followed up for 6 months or longer

Nicotine EC versus NRT,
Serious adverse events at 1+ weeks

GRADE certainty of evidence:

Heterogeneity: Tau^2 (DLd) = 0.05; Chi^2 = 5.70, df = 4 (P = 0.22); I^2 = 30%

Footnotes

^aData at 4 weeks post-operation; time from baseline not defined and likely to differ between participants

bIntervention arm contains data from EC + placebo patch and EC + no patch study arms

^cCl calculated by Hartung-Knapp-Sidik-Jonkman method.

dTau2 calculated by DerSimonian and Laird method.

Nicotine EC
versus nonnicotine
(placebo) EC,
Smoking
cessation at 6+
months

GRADE certainty of evidence: MODERATE

	Nicotin	e EC	Non-nicoti	ne EC		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Bullen 2013	21	289	3	73	4.0%	1.77 [0.54 , 5.77]	
Caponnetto 2013a*	22	200	4	100	5.2%	2.75 [0.97, 7.76]	-
Cobb 2021a	10	130	1	65	1.3%	5.00 [0.65, 38.22]	-
Cobb 2021b	4	130	0	65	0.7%	4.53 [0.25, 82.96]	
Eisenberg 2020	5	128	3	127	2.8%	1.65 [0.40, 6.77]	
Klonizakis 2022	36	84	30	82	39.2%	1.17 [0.80 , 1.71]	-
Lucchiari 2022	15	70	15	70	13.9%	1.00 [0.53 , 1.89]	+
Tuisku 2024	42	152	30	153	33.0%	1.41 [0.93 , 2.13]	-
Total (Wald ^c)		1183		735	100.0%	1.34 [1.06 , 1.70]	•
Total events:	155		86			_	
Test for overall effect:	Z = 2.46 (F	P = 0.01)				Favours	0.01 0.1 1 10 10 non-nicotine EC Favours nicoti

Heterogeneity: Tau^2 (DLd) = 0.00; Chi^2 = 6.14, df = 7 (P = 0.52); I^2 = 0%

Footnotes

a36 mg/mL arm; control group split to avoid double-counting

b8 mg/mL arm; control group split to avoid double-counting

cCl calculated by Wald-type method.

dTau2 calculated by DerSimonian and Laird method.

Nicotine EC versus nonnicotine (placebo) EC, SAEs at 1+ weeks

GRADE certainty of evidence:

	Nicotin	ne EC	Non-nico	tine EC		Risk ratio	Riskı	ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rando	m, 95% CI
Bullen 2013	24	241	4	57	31.2%	1.42 [0.51 , 3.93]		_
Caponnetto 2013a*	0	72	0	45		Not estimable		
Cobb 2021a	8	86	3	37	20.1%	1.15 [0.32 , 4.08]	-	<u> </u>
Cobb 2021b	5	81	4	37	20.5%	0.57 [0.16, 2.00]	-	_
Eisenberg 2020	3	128	5	127	16.3%	0.60 [0.15 , 2.44]	-	_
George 2019	0	37	0	37		Not estimable		
Lucchiari 2022	0	70	0	70		Not estimable		
Meier 2017	0	24	0	24		Not estimable		
Okuyemi 2022	0	109	0	106		Not estimable		
Rose 2023*c	1	11	0	13	3.4%	3.50 [0.16 , 78.19]		
Tuisku 2024	2	152	2	153	8.5%	1.01 [0.14 , 7.05]		
Total (Wald ^d)		1011		706	100.0%	0.98 [0.55 , 1.73]	•	•
Total events:	43		18					
Test for overall effect:	Z = 0.07 (F	P = 0.95)					0.01 0.1 1	10 100
						Favo	ours nicotine EC	Favours non-ni

Heterogeneity: Tau^2 (DLe) = 0.00; Chi^2 = 2.41, df = 5 (P = 0.79); I^2 = 0%

Footnotes

a36 mg/mL; control group split to avoid double counting

b8 mg/mL; control group split to avoid double counting

^cAll participants receiving placebo patch

dCl calculated by Wald-type method.

eTau2 calculated by DerSimonian and Laird method.

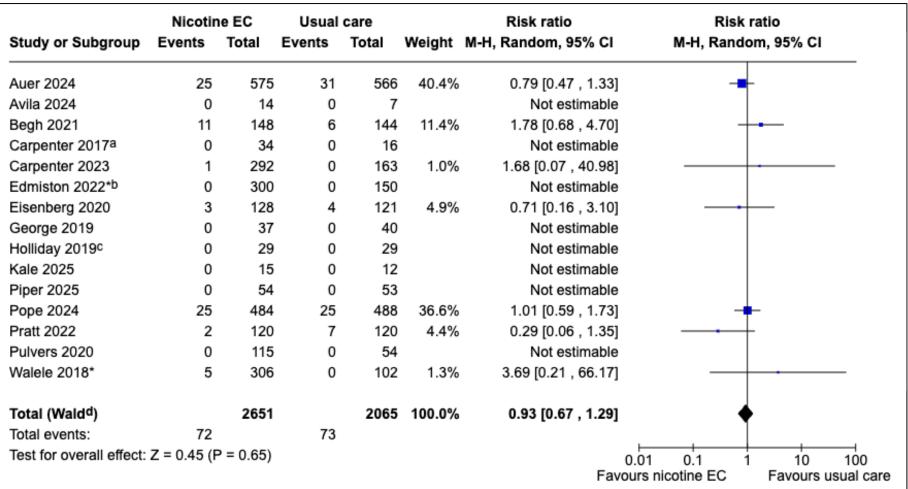
Nicotine EC
versus
behavioral
support only/no
support,
Smoking
cessation at 6+
months

GRADE certainty of evidence:

	Nicotin	ne EC	Usual	care		Risk ratio	Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Auer 2024 ^a	141	622	102	624	40.6%	1.39 [1.10 , 1.74]	•
Begh 2021	7	164	3	161	2.7%	2.29 [0.60, 8.70]	+-
Carpenter 2023	58	427	17	211	14.8%	1.69 [1.01 , 2.82]	-
Dawkins 2020	3	48	0	32	0.6%	4.71 [0.25 , 88.30]	
Eisenberg 2020	5	128	1	121	1.1%	4.73 [0.56, 39.88]	+
Halpern 2018	4	1199	0	813	0.6%	6.11 [0.33 , 113.24]	
Holliday 2019b	6	40	2	40	2.0%	3.00 [0.64 , 13.98]	
Lucchiari 2022	15	70	10	70	8.2%	1.50 [0.72 , 3.11]	+-
Pope 2024	35	484	20	488	13.9%	1.76 [1.03 , 3.01]	-
Pratt 2022	6	120	2	120	1.9%	3.00 [0.62 , 14.57]	
Xu 2023*	91	566	14	271	13.6%	3.11 [1.81 , 5.36]	-
Total (HKSJc)		3868		2951	100.0%	1.78 [1.42 , 2.25]	•
Total events:	371		171				
Test for overall effect:	T = 5.58, d	if = 10 (P	= 0.0002)			Fa	0.01 0.1 1 10 100 avours usual care Favours nicotine

Heterogeneity: Tau^2 (DLd) = 0.02; Chi² = 11.47, df = 10 (P = 0.32); I^2 = 13%

Footnotes


aAs NRT was not provided by the study, we classed this comparator arm as "behavioural support only."

^bAlthough participants were given a choice of nicotine concentration including 0 mg, none of the participants chose the non-nicotine e-liquid ^cCl calculated by Hartung-Knapp-Sidik-Jonkman method.

dTau2 calculated by DerSimonian and Laird method.

Nicotine EC
versus
behavioral
support only/no
support,
SAEs at 1+
weeks

GRADE certainty of evidence: VERY LOW

Heterogeneity: Tau^2 (DLe) = 0.00; Chi² = 5.55, df = 6 (P = 0.48); I^2 = 0%

Footnotes

aData from 24 mg arm (0 events in 16 mg arm as well)

bMenthol and tobacco flavour arms were combined

cParticipants offered choice of nicotine or no-nicotine EC; all chose nicotine-containing EC

dCl calculated by Wald-type method.

eTau2 calculated by DerSimonian and Laird method.

Conclusions

- There is high-certainty evidence that nicotine EC increase quit rates compared to NRT, and moderate-certainty evidence they increase quit rates compared to EC without nicotine. Evidence comparing nicotine EC with behavioral support or no support also suggests benefit, but is less certain due to lack of blinding.
- Overall incidence of SAEs was low across all study arms. We did not detect evidence of serious harm, but longer, larger trials are needed to fully evaluate safety. Included studies tested regulated nicotine-containing EC; other products may have different harm profiles.
- We need more RCTs that:
 - Aim to assess safety for as long as possible (and ideally be powered to detect differences in SAEs)
 - Use active comparators, particularly those other than NRT, or other EC characteristics (e.g. flavor, nicotine strength)
 - Test EC as an adjunct to other treatments
 - Test newer EC devices

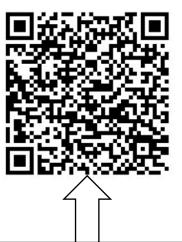
ONPs versus vaping for smoking cessation – very different evidence bases!

	ONP	EC
RCTs	4	61
Participants	282	30,366
Strength of evidence for cessation	No studies following up for 6+ months	Compared to NRT: high certainty, more effective Compared to placebo: moderate certainty, more effective Compared to minimal control: low certainty, more effective
Strength of evidence, serious adverse events	Low/very low (no clear difference)	Low/very low (no clear difference)

1. Hartmann-Boyce J, Chepkin SC, Ye W, Bullen C, Lancaster T. Nicotine replacement therapy versus control for smoking cessation. Cochrane. 2018 May 31;5(5)

Thank you! For further information...

See full reviews for:


- More detail on everything that's been presented
- Secondary outcomes
- Other comparisons
- Data from uncontrolled studies
- Comparison with other reviews

particularly the effects of newer types of e-cigarettes that have better nicotine delivery

Or just email me, at jhartmannboy@umass.edu

See our living review project website for briefing documents, infographics, and a link to our monthly podcast